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Abstract  

Reinforced concrete columns deteriorate over time, necessitating strengthening methods such as wrapping with 

carbon fiber reinforced polymer (CFRP) to enhance their strength. Predicting the compressive strength of these 

columns is vital for structural assessment and design. This study explores the use of soft computing techniques, 

specifically multivariable linear regression (MLR) and multivariable nonlinear regression (MNLR), to predict the 

compressive strength of columns confined with CFRP. A dataset comprising 46 experimental observations is 

utilized to develop and validate the predictive models. The results highlight the effectiveness of soft computing 

approaches in accurately estimating the compressive strength of CFRP-wrapped reinforced concrete columns, 

offering valuable insights for structural engineers and practitioners. The diameter-to-height ratio (d/h) of the 

column, the compressive strength of unconfined concrete (𝑓𝑐
′), number of layer of CFRP (n), thickness of CFRP (t) 

the elastic modulus (𝐸𝑓𝑟𝑝) and tensile strength (𝑓𝑓𝑟𝑝) of CFRP, the area of longitudinal steel (𝐴𝑠), and the yield 

strength (𝑓𝑦) of longitudinal steel were considered as input parameters, while the compressive strength of FRP-

confined columns was considered as the target. The proposed methods are compared with the existing models and 

provide great accuracy in predicting the results. Among the utilized methods, the MLR model showed the highest 

accuracy. 
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1. Introduction  

Reinforced concrete columns serve as crucial components, withstanding both horizontal and vertical loads 

within concrete structures. Consequently, their resilience significantly contributes to the overall structural 

integrity. Retrofitting these elements often involves employing various conventional methods such as 

exterior pre-stressing systems, steel collars, or concrete, along with fiber-reinforced polymers (FRP). 

Among these methods, strengthening reinforced concrete structures using FRP composites has gained 

widespread acceptance globally due to its ability to enhance resistance significantly without altering the 

structure's original shape and dimensions [1]. The primary characteristics of polymer composites include 

corrosion resistance, ease of installation, and their lightweight nature. Additionally, the cost-effectiveness 

of FRP materials has contributed to their increased utilization. To ensure reinforced concrete columns can 

sustain significant deformations under load prior to failure, lateral confinement is essential to attain 

adequate strength. Consequently, FRP is often employed to provide external confinement for reinforced 

concrete columns, particularly when internal transverse reinforcement is insufficient. Furthermore, FRP 

materials offer advantages such as the ability to design simpler and more durable structures, high tensile 

strength, better compatibility with pre-stressing systems, and reduced fatigue compared to steel. A 

substantial body of experimental studies has been conducted to investigate various FRP strengthening 

techniques [1–6]. In recent years, there has been a notable expansion in the use of soft computing methods 

for predicting relationships between parameters in civil engineering. This trend has emerged due to the 

favorable performance and high accuracy of such methods. 



In 1997, Hoshikum et al. [7] formulated a stress-strain model for confined concrete following an 

experimental investigation. Their study involved the examination of various reinforced concrete columns 

featuring diverse cross-section shapes (including circular, square, and wall-type) and distinct 

configurations of hoop reinforcement under compression loading. Their findings led to the determination 

that the peak stress, accompanied by its corresponding strain and degradation rate, significantly influences 

the stress-strain relationship. 

In 2006, Matthys et al. [8] conducted a study on the stress-strain characteristics of large-scale columns 

subjected to axial loading and confined with FRP (Fiber-Reinforced Polymer). Their research delved into 

the efficacy of prevailing stress-strain models in forecasting the performance of these large-scale columns. 

Notably, they observed that only a limited number of models, primarily derived from small-scale 

specimens, exhibited satisfactory alignment with the experimental results. 

Eid and Paultre (2007) [9] introduced a stress-strain model utilizing the analytical approach, incorporating 

the renowned Drucker–Prager failure criterion. This model is applicable to both the axial and lateral 

responses of confined concrete in circular columns, whether reinforced with transverse steel, fiber-

reinforced, or a combination of both. Their analysis revealed strong agreement between the proposed 

analytical model and experimental findings, as well as finite element simulations. 

Paultre and Légeron (2008) [10] introduced novel equations aimed at predicting the behavior of columns 

with circular and rectangular cross-sections. These equations were developed through a comprehensive 

parametric study, which involved analyzing numerous columns. The study took into account various 

factors, including the concrete strength, yield strength of transverse reinforcement, axial load level, and 

spatial distribution of transverse confinement reinforcement. By systematically examining a wide range 

of column configurations, Paultre and Légeron demonstrated the effectiveness and accuracy of their 

equations. They validated their findings by comparing them against extensive experimental data sets. This 

rigorous validation process underscored the reliability and applicability of the proposed equations in 

accurately predicting the behavior of columns under various conditions. 

In 2009, Caglar [11] employed artificial neural networks (ANN) to predict the shear strength of circular 

reinforced concrete columns under constant axial load and cyclic lateral loading conditions. Utilizing 

ANN allowed for a more flexible and adaptive approach in estimating shear strength compared to 

traditional methods. Caglar conducted a thorough analysis by comparing the results obtained from the 

neural network with those derived from various design codes. This comparison involved calculating the 

ratios between the outputs from the neural network and the outcomes predicted by the design codes. 

Ultimately, Caglar demonstrated the superior performance of the neural network model in accurately 

determining the shear strength of circular columns. The excellent performance of the ANN model 

showcased its effectiveness as a predictive tool for assessing the shear behavior of reinforced concrete 

columns, particularly under the specified loading conditions. 

In 2010, Naderpour et al. [12] proposed an equation for prediction of the FRP-confined compressive 

strength of concrete using an extensive number of experimental data by applying artificial neural 

networks. 

Chastre and Silva (2010) [13] carried out an experimental investigation on twenty-five circular reinforced 

concrete columns confined with CFRP subjected to axial compression. The variable parameters in their 

study were the column diameter, space of stirrups and number of CFRP layers. They proposed a stress-



strain model with consideration of CFRP and transversal reinforcement effect on compressive strength 

based on their experimental study. Their proposed model predicts the compressive strength of the confined 

concrete, the maximum bearing capacity and the axial or the lateral failure strain. 

In 2012, Wang et al. [14] conducted an experimental study by testing thirty large-scale circular columns 

subjected to various compression loading (monotonic and cyclic). The variable parameters in their study 

were column diameter and height, longitudinal bars, stirrups spacing and number of CFRP layers. They 

also proposed a cyclic stress-strain model based on their experimental work. 

In 2015, Shirmohammadi et al. [15] presented a stress-strain model for circular concrete columns with 

existence of FRP and transverse steel when they act simultaneously based on the experimental database. 

Cascardi et al. (2017) [16] proposed an analytical model to predict the strength of FRP-confined concrete 

for circular columns which revolves new effectiveness parameter as opposed to current models using 

Artificial Neural Networks by considering a large experimental database. 

Also many researches have been conducted using soft computing methods such as prediction of the 

strength of CCFT short columns subject to axial load [17], in which a model to predict the compressive 

capacity of circular concrete-filled steel tube was suggested [18]; Furthermore, prediction of shear 

contribution of FRP-confined RC beams by externally bonded method using ANFIS was also investigated 

[19]. Estimation of compressive strength in environmentally friendly concrete [20], determining 

compressive strength of concrete by ANN and ANFIS models [21] and prediction of compressive strength 

of mortars having calcium inosilicate minerals [22] were among other studies. 

There are two types of models for predicting the maximum compressive strength of FRP confined 

concrete. In the first type, only the FRP confinement effect, and in the second type, the simultaneous effect 

of FRP confinement and transverse steel is considered. In this study for the sake of simplicity the effect 

of transverse steel was not considered. In addition, based on 46 validated experimental data, several 

models using 8 input data including the diameter to height ratio (d/h) of the column, the compressive 

strength of unconfined concrete (𝑓𝑐
′), number of layer (n) of CFRP, thickness (t) of CFRP the elastic 

modulus of CFRP (𝐸𝑓𝑟𝑝) and tensile strength (𝑓𝑓𝑟𝑝) of CFRP, the area of longitudinal steel (𝐴𝑠), and the 

yield strength (𝑓𝑦) of longitudinal steel were used to predict the maximum stress sustain by the FRP-

confined column using soft computing methods such as MLR, and MNLR. Therefore, the main objective 

of this work is to establish soft computing models to estimate the confined compressive strength of plain 

concrete cylinders. Furthermore, several statistical tools have been utilized to assess the models. In this 

regard, a model with the best performance to predict the 𝑓𝑐’𝑐 can be identified and the applicability of the 

models in the real world can also be discussed. 

2. Assembled experimental database 

The experimental database, which consists of 46 specimens, assembled from five different experimental 

works (Chastre and Silva 2010; Eid et al. 2006; Benzaid et al. 2010; Abdelrahman and El-Hacha 2016; 

Demers and Neale 1999). All of the specimens were confined with full FRP and tested under monotonic 

loading, consecutively. The height-to-diameter ratio (aspect ratio) of the samples (H/D) is less than 5, for 

which the diameter is ranging 150–300 mm and height from 320 to 1200 mm. The strength of unconfined 

concrete 𝑓𝑐0 varies between 26 and 62 Mpa. Accordingly, the property of FRP sheets and steel 

reinforcement varies considerably. Furthermore, the type of the FRP which was used for all of the 



specimens was carbon FRP type. The strength of FRP sheets varies between 450 and 3339 MPa, The area 

and yield strength of steel reinforcements varies between 169.5 mm2 and 2492 mm2 and 391 MPa and 550 

MPa, respectively. Table 1 Statistical properties of the assembled data provides a summary of the statistics 

for the experimental database assembly. 

 

3. Methodology  

In total, datasets from 46 samples were gathered in some studies. In the studies, reinforced concrete 

confined were strengthened by CFRP. The samples were tested under uniaxial compressive strength and 

the maximum strength of the samples were recorded. In this work, some input parameters than might have 

the influence on the confined compressive strength of reinforced concrete columns were included, such 

as, diameter-to-height ratio (d/h), compressive strength of the concrete (fc’ MPa), the thickness of the FRP 

(tf mm), number of wrapped layers (n), the modulus of elasticity of the FRP (Ef MPa), the ultimate tensile 

strength of the FRP (𝑓𝑓𝑢 MPa), the area of longitudinal reinforcement and the yield strength of steel 

reinforcement. Afterward, soft computing models, including multivariable linear regression (MLR), and 

multivariable non-linear regression (MNLR), were employed to predict the confined compressive strength 

of the reinforced concrete column. Table 1 shows the ranges of the data collected from the literature. The 

input parameters were utilized in the process of developing the models, and the performance of the models 

was evaluated by comparing the predicted values with the actual values of the output parameter. It was 

determined whether or not the models were accurate by using the testing datasets. Finally, statistical tools 

were utilized to evaluate the performance of the models. Table 2 contains the statistical values of the 

parameters on both the input and the output. 

 

Table. 1: The ranges of the data from the collected samples. 

 
 

Table 2: Statistical summary of input and output parameters of experimental data. 

 
 

 

 



4. Modelings  

Previous figures indicated that estimating the confined compressive strength of concrete wrapped with 

FRP cannot be obtained from single properties. Therefore, to provide the prediction of this significant 

parameter, it is very essential to employ mathematical and/ or machine learning models by including the 

compressive strength of concrete and the essential properties of the FRPs. The following sections 

introducing the employed models. 

 

a. Multivariable Linear Regression (MLR)  

 

Multivariable linear regression models are used to predict 𝑓𝑐c′ based on the considered properties. These 

models use addition or subtraction terms to model the relationship between independent variables and the 

dependent variable (Ali, 2023a). This allows for a more accurate representation of underlying patterns in 

the data. Multivariable linear regression assumes a linear relationship between independent variables and 

the dependent variable, but this may not account for non-linear correlations. The mathematical expression 

of the model is: 
 

 

𝑓𝑐𝑐
′ = 𝛽0 + 𝛽1

𝑑

ℎ
+ 𝛽2𝑓𝑐

′ + 𝛽3𝑡𝑓 + 𝛽4𝑛 + 𝛽5𝐸𝑓 + 𝛽6𝑓𝑓𝑢 + 𝛽7𝐴𝑠 + 𝛽8𝑓𝑦                            (1) 

 

 

b. Multivariable Non- Linear Regression (MNLR)  

 

The multivariable nonlinear regression model is used to predict 𝑓𝑐′𝑐 of concrete based on properties such 

as, diameter to length ratio of the sample, unconfined compressive strenght of concrete, the thickness of 

FRP, number of wrapped layers, modulus of elsticity of FRP, and the ultimate tensile strength of FRP. 

This model uses power/exponential terms to describe nonlinear relationships between independent and 

the dependent variables, identifying non-linear correlations that may better reflect data patterns. The 

multivariable nonlinear regression method seems to be superior to the linear regression method in 

capturing non-linear correlations (Ali, 2023b). It can be expressed as: 

 

𝑓𝑐𝑐
′ = 𝛽0 + 𝛽1 (

𝑑

ℎ
)

𝛽2

+ 𝛽3𝑓𝑐
′𝛽4 + 𝛽5𝑡𝑓

𝛽6 + 𝛽7𝑛𝛽8 + 𝛽9𝐸𝑓
𝛽10 + 𝛽11𝑓𝑓𝑢

𝛽12 + 𝛽13𝐴𝑠
𝛽14

+ 𝛽15𝑓𝑦
𝛽16                    (2) 

 

5. Evaluation Criteria  

The performance of the proposed models was evaluated using various metrics, including R2 (coefficient 

of determination), SI (scatter index), a20-index, VAF (variance accounted for), RMSE (root mean squared 

error), and MAE (mean absolute error). The following formulas can be utilized to calculate these 

assessment measures: 

 

𝑅2 = (
∑ (𝑦𝑖 − 𝑦𝑖′)(𝑦𝑝 − 𝑦𝑝′)𝑃

𝑃=1

√[∑ (𝑦𝑖 − 𝑦𝑖′)2𝑃
𝑃=1 ][∑ (𝑦𝑝 − 𝑦𝑝′)2𝑃

𝑃=1 ]
)

2

                                  (3) 



𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑝 − 𝑦𝑖)2𝑃

𝑃=1

𝑝
                                                                         (4) 

𝑀𝐴𝐸 =
∑ |𝑦𝑝 − 𝑦𝑖|𝑃

𝑃=1

𝑝
                                                                                 (5) 

 

𝑎20 − 𝑖𝑛𝑑𝑒𝑥 =
𝑚20

𝑁
                                                                                    (6) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑦𝑖 − 𝑦𝑝)

𝑣𝑎𝑟(𝑦𝑖)
) ∗ 100                                                            (7) 

 

 

In the equations that were discussed before, variables such as yp and yi are utilized to represent the 

expected and actual values of the path pattern, respectively. Furthermore, the variables yp' and yi' are used 

to indicate the averages of the actual and forecasted values, and the variable n is used to denote the number 

of patterns that constitute the dataset. A score of zero is intended to be assigned to each of the evaluation 

factors, with the exception of R2, a20-index, and VAF. Between 0.8 and 1.2 is the range of the m20 

measure, which represents the ratio of the values that were seen to those that were anticipated. N denotes 

the total number of data samples that were collected. Furthermore, the a20-index guarantees that the model 

accurately forecasts values within a margin of error of ±20% when compared to the actual values. The 

variance attributable factor (VAF) analysis determines the proportion of the dependent variable's variance 

that can be attributed to the independent variables. The VAF value is a good indicator of the accuracy of 

the measurement. The results that were predicted by the models were also visually depicted by employing 

error margin lines that were either positive or negative. These lines were used to show the percentage of 

overestimated and underestimated (𝑓𝑐c’) in relation to the actual values that were acquired from the trials. 

 

7. Results and Discussions  

In this section, the outcomes for the linear and non-linear models are illustrated. The accuracy of the 

models was compared with the experimental values of the compressive strength of reinforced concrete 

wrapped with CFRP. Figure 1 depicts the comparison between predicted and experimental values for the 

MLR model. It is evident that the R2 value for the data is 0.926, with RMSE values of 5.34 MPa. For an 

accurate prediction, this model cannot be relied upon. However, it is a very simple model to be applied 

for rough estimating the value of Since the mathematical form of the model is very simple, Equation 8 

represents the outcome of the model. 

 

𝑓𝑐𝑐
′ = 1008.7

𝑑

ℎ
+ 0.99𝑓𝑐

′ − 351𝑡𝑓 + 8.1𝑛 + 5.93𝐸𝑓 − 0.385𝑓𝑓𝑢 + 0.0005𝐴𝑠 + 0.028𝑓𝑦

− 182.5                                                                          (8) 

 

As far as the results of MNLR are concerned, this model seems to reduce the scattering, as it offered an 

R2 value of 0.86 with an RMSE of 7.27 MPa. Compared to MLR, it performed better with a higher R2 

and a lower RMSE (Figure 2). However, this model can provide predictions with a 20% error. This might 

be acceptable for an approximate estimation. To obtain an accurate value, advanced mathematical models 

are required. Nevertheless, this model can still be advantageous for its application in practice, as it has a 

simple mathematical form, as illustrated in Equation 9. 



𝑓𝑐𝑐
′ = 2.24 (

𝑑

ℎ
)

0.95

+ 12.42𝑓𝑐
′0.49

+ 4.34𝑡𝑓
−0.1 + 0.0000095𝑛10.5 + 0.18𝐸𝑓

1.32 − 0.13𝑓𝑓𝑢
0.91

− 3.52𝐴𝑠
−31.9  − 0.445𝑓𝑦

−3.05 + 2.1                                                     (9) 

 
 

 
Figure 1: Comparison between measured and predicted values of the confined compressive strength for MLR model 

 



 
Figure 2: Comparison between measured and predicted values of the confined compressive strength for MNLR model 

 

 

8. Model Comparison  

The performance of the multivariable mathematical models that are utilized to predict the confined 

compressive strength (𝑓𝑐c′) of concrete can be evaluated based on a number of statistical assessment 

criteria. These criteria include the coefficient of determination (R2), root mean square error (RMSE), mean 

absolute error (MAE), a20-index (the percentage of errors that are within ±20% of the observed values), 

and variation accounted for (VAR) values.  

R2 values are a measure of the proportion of the variance in the 𝑓𝑐c′ that can be accounted for by the 

models. R2 values that are higher imply that the model is performing better. Based on the data presented 

in Table 3, it is evident that the MLR model has the greatest R2 value (0.926). An R2 score of 0.86 

indicates that the MNLR (Multivariable Non-linear Regression) model likewise demonstrates satisfactory 

performance. MLR.  

Root Mean Square Error (RMSE): The RMSE values are the average magnitude of the prediction errors 

that are made by the models. When the RMSE values are lower, it indicates that the models are more 

accurate. Based on the data presented in Table 3, the MLR model has the lowest RMSE value, which is 

5.34 MPa, and the MNLR has a RMSE value of 7.27 MPa.  

The mean absolute error (MAE) values are numbers that indicate the average magnitude of the absolute 

prediction errors that are produced by the models. When the MAE numbers are lower, it indicates that the 

models are more accurate. Based on the data presented in Table 3, it is clear that the MLR model has the 

lowest MAE value, which is 4.23 MPa while MNLR model offered the MAE value of 5.4 MPa.  

The values of the a20-index are quantified as the percentage of mistakes that fall within a range of ±20% 

of the values that have been observed. When the a20-index values are higher, it indicates that the models 



are more consistent. Based on the data presented in Table 3, it is evident that the MLR model possesses 

the greatest a20-index value, which is 1.0. The MNLR model has the lowest a20-index value that is 0.96.  

The variance accounted for (VAR) values are a representation of the percentage of variation that can be 

attributed to the models. VAR values that are higher suggest that the model is performing better. Based 

on the data presented in Table 3, it is evident that the MLR model possesses the largest VAR value, which 

is 91.99%, The MNLR model has the lowest VAF value that is 85.57%. Compared to the other models, 

the VAR values are smaller, which indicates that they explain less variance.  

 

When it came to estimating the compressive strength of reinforced concrete wrapped by CFRP, the MLR 

model consistently demonstrated higher performance, as determined by the statistical assessment criteria 

that were utilized. With higher R2 values, lower RMSE and MAE values, higher a20-index values, and 

higher VAR values, this model demonstrated improved accuracy, stability, and explanatory power. Based 

on the performances presented before for both MLR and MNLR it can be considered as an applicable in 

the real-world and an approximate value of the compressive strength of concrete wrapped with CFRP can 

be estimated, particularly, MLR model which performed better than MNLR model. 
 

Table 3: Statistical assessment measures. 

 
 

10. Conclusion  

Reinforced concrete columns are deteriorating due to corrosion and spalling, affecting aging 

infrastructure. The most common repair method is the wrapping of columns with fiber reinforced polymer 

(FRP). FRP offers high strength-to-weight ratio and corrosion resistance. In practice, it is significant to 

estimate the compressive strength of a column wrapped with FRP. In this work, multivariable linear and 

nonlinear regression mathematical methods were employed to estimate the confined compressive strength 

of reinforced concrete wrapped with CFRP. The results indicated that MLR model more accurate than 

MNLR. Therefore, despite the minor differences in the performance, both MLR and MNLR models can 

be advantageous to be applied in real-world, particularly, MLR model which performed better than MNLR 

model. 
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